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Linear Threshold Unit

x' W Prediction
sgn (wh'x + b) = sgn(Cw;x; + b)
Y Learning
3 dot threshold various algorithms
product perceptron, SVM, logistic regression,...
4
in general, minimize loss
l
features

But where do these input features come from?

What if the features were outputs of another classifier?



Features for Linear Threshold Unit
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Features from Classifiers

Each of these connections have their own weights as well
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Features from Classifiers

This is a two layer feed forward neural network




Features from Classifiers

This is a two layer feed forward neural network
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Think of the hidden layer as learning a good representation of the inputs



Features from Classifiers

This is a two layer feed forward neural network
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The dot product followed by the
threshold constitutes a neuron

Five neurons in this picture (four in hidden layer and one output)



Features from Classifiers

The input layer
What if the inputs were the outputs of a classifier?

We can make a three layer network.... And so on.
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Neural Networks

* A robust approach for approximating real-valued,
discrete-valued or vector valued functions

* Among the most effective general purpose supervised
learning methods currently known

— Especially for complex and hard to interpret data such as real-
world sensory data

* The Backpropagation algorithm for neural networks has
been shown successful in many practical problems

— handwritten character recognition, speech recognition, object
recognition, some NLP problems
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Inspiration from Biological Neurons

The first drawing of a brain

cells by Santiago Ramoén y
Cajal in 1899

Neurons: core components of brain and the
nervous system consisting of

1. Dendrites that collect information from
other neurons

2. An axon that generates outgoing spikes
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Artificial Neurons

Functions that very loosely mimic a biological neuron

A neuron accepts a collection of inputs (a vector x) and produce
an output by:

1. Applying a dot product with weights w and adding a bias b

2. Applying a (possibly non-linear) transformation called an activation

output = activation(w’ x + b)

Dot
product

Threshold activation

Other activations are possible
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Activation Functions

output = activation(w'x + b)

Name of the neuron Activation function: activation(z)
Linear unit Z

Threshold/sign unit sgn(z)

Sigmoid unit T+ exlﬁ =)

Rectified linear unit (ReLU) max (0, z)

Tanh unit tanh (2)

Many more activation functions exist (sinusoid, sinc, gaussian, polynomial...)
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Neural Network

A function that converts inputs to outputs
defined by a directed acyclic graph

— Nodes organized in layers, correspond to
neurons

— Edges carry output of one neuron to
another, associated with weights

 To define a neural network, we need to
specify:
— The structure of the graph
* How many nodes, the connectivity

— The activation function on each node
— The edge weights
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Neural Network

A function that converts inputs to outputs
defined by a directed acyclic graph

— Nodes organized in layers, correspond to
neurons

— Edges carry output of one neuron to

another, associated with weights

. .
To define a neural network, we need to Called the architecture

SpECIfy:— of the network
— The structure of the graph / Typically predefined,
* How many nodes, the connectivity part of the design of

— The activation function on each node the classifier

— The edge weights I—» Learned from data
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A Brief History of Neural Network

1943: McCullough and Pitts showed how linear threshold units can
compute logical functions

1949: Hebb suggested a learning rule that has some physiological
plausibility

1950s: Rosenblatt, the Peceptron algorithm for a single threshold neuron

1969: Minsky and Papert studied the neuron from a geometrical
perspective

1980s: Convolutional neural networks (Fukushima, LeCun), the
backpropagation algorithm (various)

2003-today: More compute, more data, deeper networks
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A Single Neuron with Threshold Activation

Prediction = sgn(b +w, X, + w,X,)

b +w, X; + W,X,=0

+
i+

+ + +
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Two Layers with Threshold Activation

In general,
convex

polygons

Figure from [Shai Shalev-Shwartz and Shai Ben-David, 2014]
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Three Layers with Threshold Activation

In general, unions
of convex polygons

AN
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Figure from [Shai Shalev-Shwartz and Shai Ben-David, 2014]




NNs are Universal Function Approximators

Any continuous function can be approximated to arbitrary accuracy using
one hidden layer of sigmoid units [Cybenko 1989]

Approximation error is insensitive to the choice of activation functions
[DasGupta et al 1993]
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Predicting with Neural Networks

We will use this example network OU put
as to introduce the general

principle of how to make
predictions with a neural network.
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Predicting with Neural Networks

Naming conventions for this

Sigmoid activations ~ s

Bias feature
always 1

’ <
S

output example
* |nputs: x
Llnearactwatmn * Hidden:z
* Qutput:y
ey,
- : -
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Predicting with Neural Networks

output
Naming Convention for Weights

target_layer o
Wf rom,to

0 0 0
Wy W11 31
Z
0 @ - 9
Wo1 "~ h
From neuron #0 0 sz‘lz
to neuron #1 in

output layer o X1 o
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Predicting with Neural Nets: The Forward Pass

Given an input x, how is the output predicted

output
0 0 0
Wy W11 21
W h
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The Forward Pass

Given an input x, how is the output predicted

— h h h
z; = 0(Wo1 + Wi1X1 + Wa1X2)
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The Forward Pass

Given an input x, how is the output predicted

_ h h h
z; = 0(Woz + WizXg + WapX3)

_ h h h
z; = 0(Wo1 + W11X1 + W31X3)
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The Forward Pass

Given an input x, how is the output predicted

output e e e e e e e e
output y = wg; + w1z, + w3y, z, |
I I
I I
: _ h h h !
o ! Z; = 0(Woz + WizXy + WapXp)
0 0 o ! !
Wy W11 21 ! !
_ h h h
: Z1 = o(Wpr + wi1x1 + wpix3) !
W h

30



Take-Home Messages

Stacking Linear Threshold Units
Neural Networks
Expressivity of Neural Networks

Predicting with Neural Networks
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